MOTION OF A DROP IN A FLOW WITH VARYING VELOCITY

S. V. Ananikov, A. V. Talantov, UDC 532.539.6
and B. M. Azizov ’

An analytical solution is given for the problem concerning the motion of a drop in a gas flow,
the velocity of which decreases linearly with distance.

A knowledge of the mechanisms of motion of a droplet and of particles in a flow of gas is of great impor-
tance for a large number of fields of technology concerned with dispersed systems. In particular, we may re-
fer here to processes taking place in the combustion chambers of aircraft engines, in internal combustion en-
gines, in chemical equipment, in technological facilities, etc. In the majority of cases, the dispersed phase is
entrained by the continuum, the velocity of which is decreasing along the zone of contact. This nature of mo-
tion of the phases occurs, for example, in air-breathing jet engines [1, 2], in atomizing-type apparatuses [3],
in various contact devices with unidirectional flow motion {4-8], in Venturi-type apparatuses [9], etc.

A knowledge of the velocity of the dispersed phases allows the stable diameter to be determined and the
mechanism of the exchange process to be established; finally, it also allows recommendations to be made on
the choice of structural parameters. '

Because of this, the solution of the problem concerning the motion of a single drop in a stream of gas,
the velocity of which decreases according to a linear law, is of undoubted interest. It should be noted that
almost any nonlinear profile can be replaced by a piecewise-linear profile, i.e., this problem is of general
importance.

We choose the following dependence of the gas velocity (W) on the distance (S) [10]:

8
We=W,— (W, — W) T 1)
The equation of motion of a spherical drop in a one-dimensional flow has the form
2
mg M _ Vo imdg(l-———-&—p ) @)
dt 2 . pd

The relative velocity of the drop is

Let us consider three hydrodynamic regimes of flow of the drop.

Laminal Regime

In the case of slow movement of the drop (Re = 1), the drag coefficient, as shown in [11], can be repre-
sented in the form
where Re = VD/vy; v, is the kinematic viscosity of the gas, m?/sec. Transformation of Eq. (2), taking into
account relations (1), (3) and (4), leads to an equation relative to S:
8"+ BS +CS=F. ‘ (5)

Here
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B =18 Vtg/pdD’; C = 18 pg(W,— Wer)lpsDL;
F =18 pgW /oy D + g (1 — pylog)-
The general solution of Eq. (5) with the condition
Sl =0, S0 = Vo »

T=0
depending on the sign of the discriminant A, has the form [12]

M =B—4C>0,

— B — — M F
Szclexp—~—32—'2“—r~;—czexp——%—/ﬁr+—6—, (6a)
where
c_ Vo _ _F . __ % _ Va
! 3 AB—2 " P AB-N A
WM =4C —B2>0;
F
S = exp (_ —;~ Br) (61 c0s é— At + C,sin é— M) + ak {6b)
Here
C, = — FIC; C, = Wy [h— FBCh;
4C = B,
i \ . 4F
S = exp (-——2— BT) (C, -+ Cy1) + & (6¢c)
where C, = —4F/B? and C, = Vg, — 2F/B.
Differentiating Egs. (6a)-(6c), we determine the velocity of the drop: when A% = B% — 4C > 0,
—B+1 — B+ B+ —B—h _
Va = — C,exp 5 T — ’2‘“ C, exp — (7a)
when A2 =4C — B? > 0,
Va=exp|— L Bt | V4, cos L AT - + (2F — V4, B) sin L M} ; (7h)
2 2 A 2
and when 4C = B?,
1
V, =exp (—% Br) [Vdo + (2F—Vd,,B)r] ) (Tc)

The relative velocity of the drop at any instant of time, it can easily be seen, is determined by means of ex~
pressions (1), (3), (6), and (7).

Transition Regime

The most correct relation for determining the drag coefficient of a drop in a given regime is the equation
obtained in the work of A. T. Litvinov, which takes account of the inertial terms [13, 14]:

P = a -+ b/Re. (8)
The numerical values of the coefficients @ and b are given in [13, 14].

Substituting relations (1), (3), and (8) into Eq. (2) and neglecting the force of gravity together with the
buoyancy, in consequence of their smallness in comparison with the strong aerodynamic action of the flow for
Re > 1 [2, 15], we obtain

S"~AS"+(C——ES) S —FS8*+QS— H =0, {9
where
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A= 3apg/404D; B = 3bpg/dpsD% C =24c + B; c =W,
E =24h; h= (W,— W_)/L; F =Ah® Q= 2Ach + Bh,
H = Ac® 4 ¢B.
The substitution of p = S' reduces Eq. (9) to an Abel equation of second order {12]:
pp' = Ap* +(ES—C) p+ F§*—QS + H,
which is insolvable in quadratures. Therefore, we shall use another approach to the solution of this problem,
in which we replace Eq. (1) by the relation ‘ '
W = cexp (— 1), 10)

obtained as a result of integrating Eq. (1) with the condition SI =y = 0. Then after substituting Eq. (10) in
Eq. (3) and differentiating, we shall have

dVyg dav
= — he — ) — —— .
T exp (— ht) e (1)
The use of relations (8) and (11) converts Eq. (2), withthe condition that mgg [1- (pg/pd)] =0, into Riccati's equation
—31—4-AV2 1BV = — hoexp (— ). 12)
T
The corresponding boundary conditions have the form
VI1:=0 = V(!'

In expressions (10)-(12), the coefficients A, B, c, and h are the same as in Eq. (9).
We then find the general solution of Eq. (12).
Using the well-known substitution [12]

’

ht u
Ve ——r o = {=exp(—h1),
1 % p(—h7)
we obtain the equation
w +~(1—Nu + Eu=0, (13)
where N = B/h and E =cA/h. Assuming further that
u=X"Z(X), X =2VE,
we reduce Eq. (13) to a Bessel equation
X7 - X7~ (XP—N)Z =0,
the solution of which is well known [11]:
Z =C Iy (X) + CYn (X).
Here Jy (X) and Yy (X) are N-th order Bessel functions, respectively, of the first and second kinds.
Reverting to the variables V and t, we obtain
ki B Gy (2VEH 4+ CYh (2VEE)
A Cdy 2V El) +CYx(2VEL)
where J N_1(2w/ft7 and Yy, (2VEt)are N —1)-thorder Bessel functions, respectively, of the first and second kinds.

V=

The arbitrary constants C,; and C, are determined by means of the following system of equations:

(2VELIY [Culn (2 VEL) + CY v (2V EL)] =V,

o - — AV,
2E(2V Eto)A—l [CI‘L —1 (2 v Eto) + Gy (2 VEto)] = htoo .

Turbulent Regime

The drag coefficient of the drop in this case usually is assumed to be constant [16, 17]: § = const.
Transformation of Eq. (2), taking Eq. (11) into consideration with the condition that myg [1 —(pg/ pd)] =0,
leads to Riccati's equation
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dv
dx

+ AV? = — heexp (— &x), (14)

where A = szpg/ 4pgD. The corresponding boundary conditions have the form
Vies =V,

By means of the substitution

we reduce Eqg. (14) to the form

where E = Ac/h,
The substitution of X = 2vEt makes it possible to convert to the Bessel equation
X' 4+ Xu' - Xu =09,

the solution of which is expressed in terms of a Bessel function of the first and second kinds and of zeroth
order:

u=CJdy(X) + Czyo X).
Reverting to the variables u and t, we obtain

v/ L ChOVE
A Cdy (2VEN) +

Here J{(2VEt) and Y{(2VEt) are first order Bessel functions, respectively, of the first and second kinds.
The arbitrary constants C; and C, are found from the system of equations
Cidy (2V'EL) + CY, (2 VEL) =V,,

AVS
n

/E Cd (2VEL) +Cy, 2V ER)] =
|

U

NOTATION

W, running gas velocity, m/sec; W,, Wi,, gas velocities at the place of introduction of the droplet and
at a distance L from it, m/sec; V{, V, absolute and relative velocities of the drop, m/sec; Vg, Vs initial
values of the absolute and relative velocities of the drop, m/sec; L, distance at which the velocity Wy, is spec-
ified, m; S, path traversed by the drop, m; mgq, /d, mass (kg) and the area of the center section (m? of the
drop, respectively; g, acceleration due to gravity, m/sec’; D, diameter o fthe drop, m;Re:VD/z;g, Reynold's
criterion; JN, dN~1s 1> Jp, Bessel functions of the first kind of order N, N—1,1, and 9, respectively; Yo
YN-1s Y, Yy, Bessel functions of the second kind of order N, N — 1, 1, and 0, respectively; t = exp(—h7),

X = 2VEt, new independent variables; p =8', ut), Z(X), new dependent variables; ty, initial value of an inde-

pendent variable; A, B, C, E, F, H, M, N, Q, a, b, ¢, h, constant coefficients; Cys Co, arbitrary constants;
A, discriminant of Eq. (5); 7, time, sec; Pgs P> densities of the gas and of the drop, kg/mg; ¥, hydrodynamic

drag coefficient of the drop; vgs Bgs kinematic (m?/sec) and dynamic (N-sec/m?) viscosities of the gas.
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TWO-PHASE FLOWS WITH FRICTION

G, V. Zhizhin UDC 532,526

Results are presented of a study of the equations of one-dimensional steady two-phase flows,
taking account of friction with the channel walls. :

§1. One-dimensional steady flows of a wet vapor in thermodynamic equilibrium are studied. The ther-
mal conductivity of the vapor, the volume of the liquid phase, and the difference between the phase velocities
are not taken into account.

It is assumed that friction is the only uncompensated external action on the flow. These flows belong
to the class of flows with one internal degree of freedom [1] — the phase transition — and one external action
— friction,

The effect of friction appears to one degree or another in all motions of two-phase media in channels,
The pressure drop in a channel due to the performance of work against friction is an important engineering
characteristic. Many empirical relations are known for calculating the pressure loss due to friction [2].
However, each of these has a limited range of application and does not reflect the dynamics of the flow of a
wet vapor. It is of interest to study the appropriate differential equations to determine the general qualitative
character of flows of a wet vapor acted upon by frictional forces following any resistance laws for all possible
values of the parameters of a two-phase medium compatible with the conditions of the problem posed.

The results of the analysis can be applied to the little studied but practically important theoretical prob-
lem of the efflux of a self-evaporating liquid. This flow is, on the whole, nonequilibrium, but for a sufficiently
long channel it has a quasiequilibrium boundary region of wet vapor [3]. The cross-sectional area of the chan-
nel occupied by the wet vapor and also its mass flow rate vary from section to section as a result of the vapor-
ization of the metastable liquid at the center of the channel. The temperature of the liquid remains practi-
cally constant [3], and it will be shown later that this leads to the compensation of the geometric action of the
emerging stream on the flow of wet vapor in the boundary region. The equations describing this flow are the
same as the equations of equilibrium two-phase flow with friction.

§2. The equations of continuity, motion, and energy corresponding to the equilibrium flow of a wet
vapor in a channel of constant cross section have the form
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